
CONTENTS

1. Introduction...1

2. Hazard Identification...3

3. Hazard Analysis ..4

4. Testing...6

5. Hazard Tracking..7

6. Conclusion ..9

7. References...9

FIGURES

1. Software Safety Process Flow...2

2. Software vs Hardware Life Cycle ...5

iii

ACRONYMS

CDR Critical Design Review

CSCI Computer Software Configuration Item

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

HATS Hazard and Accident Tracking System

H/W Hardware

I/O Input and Output

PDR Preliminary Design Review

PHA Preliminary Hazard Analysis

SED Software Engineering Directorate (CECOM)

SRCA Safety Requirements/Criteria Analysis

SSCA Software Sneak Circuit Analysis

SSRA System Safety Risk Assessment

STR Software Trouble Report

S/W Software

TDRB Test Data Review Board

TIR Test Incident Report

iv

1. Introduction

 This report is intended for system and safety engineers who have a working knowledge in the
areas of software safety requirements, analysis, design and testing. The purpose of this report is
to formalize a process for software safety hazard identification, integration, and tracking for
CECOM supported systems. The intent is to identify and evaluate software safety hazards and
software development data and integrate these requirements into an existing system safety hazard
tracking system. This concept maintains the integrity of a total system hazard tracking process
that includes hardware, software, and firmware in accordance with MIL-STD-882C. The report
discusses the methodology used to develop additional requirements for software development
and software safety that are integrated into a system safety hazard tracking system. Several of the
major enhancements include the causes of software safety hazards, the software hazard
assessment codes, software versus hardware development life-cycle milestones, software testing
phases, priority levels, and areas of software development needing improvement. An attractive
feature, the development of a lessons-learned report that is generated based on specific safety
hazards, is one of the reasons the requirements are being incorporated.

Background

 The hazard identification, integration, and tracking methodology and techniques presented in
this report are based on the CECOM Software Safety Guide and MIL-STD-882C. Previous
CECOM Safety Office studies have indicated that the category of command and control software
programs associated with hazardous hardware functions merits the type of processes presented in
this report. Since most of the command and control systems have direct and indirect control (i.e.,
both control and database generation/manipulation programs) over hazardous functions, there is
no advantage in performing extensive analysis on computational/analytical programs unless the
output is used to control safety critical functions. Figure 1 is a flowchart of the CECOM
software safety processes presented in this report.

 The CECOM Safety Office currently enters all our system specific data into the Hazard and
Accident Tracking System (HATS). In the future, CECOM could provide software data and
lessons-learned information to other agencies, with updates on a periodic basis. This final
product greatly enhances our Software System Safety program, and provides a training aid that
familiarizes system safety engineers with software safety design principles and development of
software safety specifications for new software safety critical applications.

The Report

2

 The following sections present a methodology by which each individual can develop,
integrate and tailor his/her own software safety requirements and parameters for inclusion into 2a
hazard tracking system: Section 2 describes the initial hazard identification process as the first
step in identifying hazardous conditions controlled by the software, and the level of software
safety effort/analysis required. Section 3 describes the software safety analysis techniques
required to evaluate safety critical errors and the design features needed for corrective action.
Section 4 discusses the software testing requirements that are imperative for verification and
validation of essential software safety requirements. Section 5 identifies the requirements needed
to integrate software safety requirements into an overall system safety HATS.

2. Hazard Identification

 Software safety hazard identification should be treated as an extension of the hardware
Preliminary Hazard Analysis (PHA). The PHA will ensure that any identified hazard controls
related to the hardware system are built into the software design, if possible. The overall
objective is to integrate the hardware analysis with the software command and control
subsystems (including the operator interface) to generate a complete operational hazard analysis.
 The two main types of software safety hazards that the CECOM Safety Office has identified and
considered in this report are:

 1. Command and control software which has direct control of the hardware, and which might
cause a hazard (improper command), allow a hazard to propagate (does not detect the occurrence
of a hazard), or allow a hazardous condition to go unnoticed by the operator.

 2. Programs that generate the data base parameters upon which the command and control
software bases its decision.

 It is worth noting that, in most cases, the standard software development process and test
standards for reliability and quality (i.e., DOD-STD-2167A, 2168, and 498) cover the executive
software, I/O software, internal operation of the processor, and self-test software. However,
these areas need to be reviewed as part of the qualification testing to verify their capabilities.

 During the initial software safety hazard identification process, the system safety engineer
should review the PHA, the functional capabilities of the hardware, and, in conjunction with the
contractor, evaluate the ways in which the software could create, or allow, a specific problem to
occur unnoticed. The integration of the PHA into the software safety analysis would naturally
coincide with the hardware Preliminary Design Review (PDR), and emphasize the total system
safety concept. Since the software PDR occurs after the hardware PDR, any recommended
software design changes identified from the PHA could be incorporated at this time. Adhering to
the natural progression of system safety analyses, the Safety Requirements/Criteria Analysis

4

(SRCA) in accordance with MIL-STD-882C is used to perform the integrated analysis necessary
to identify, define and/or refine the software safety design requirements that should be included
into the baseline software design documents. At this point in time, the hardware design is
established, and the recommendations contained in the SRCA can be incorporated into the
software Critical Design Review (CDR). Figure 2 illustrates the hardware versus software life-
cycle milestones.

 In some cases, the software safety requirements are not known in advance of the PHA. In this
case, it is important to include software safety specifications into the software requirement
documents. This will ensure traceability of requirements during the testing phase.

 During evaluation of the PHA, the PHA should describe the hardware with a total system
approach. The PHA should describe the functions allocated to the software and their possible
undesired outcome. As part of the PHA, all identified hazards should be mapped to their
respective Computer Software Configuration Item (CSCI) for traceability to the CSCI unit level.
The results should identify critical functions that will designate critical software tasks. These
data, collected from the PHA (i.e., fault or condition, event phase, system effect, hardware and
software corrective action, initial software hazard assessment), will be essential for tracking
hazards related to software safety.

 An initial software system safety checklist can be completed from the data contained in the
SRCA, and can be used to help derive requirements associated with the hardware procedural
control requirements. To ensure there are no conflicting safety requirements contained in the
checklist, the system safety engineer should review all the software requirements. Concurrent
engineering between the safety engineer and the software developer/analyst is essential at this
point in time. The details of the checklist include program design considerations, failure of the
computer processor and any other hardware failures, memory partitioning, complete failures,
operator interfaces, H/W-S/W interfaces, illegal entries into critical routines, specific safing
actions, timing considerations, anomaly detection, etc. This checklist should be tailored as the
software design matures from concept analysis to top level design, and completed after the
detailed design review. A comprehensive and tailored checklist should be utilized during the
software testing phase.

3. Hazard Analysis

 Software System Safety Hazard Analysis should address hazards resulting from deficiencies
in the requirement/specification, design, coding, and undesired events. The methodology for
extensive software safety analysis includes the above mentioned PHA and checklists, as well as:
analyzing hardware and software interfaces, examination of safety critical single and multiple
failure sequences, impact of component failures on overall system safety, and evaluation of the

5

design response to safety requirements. The techniques involved in performing software system
safety analysis include Fault Tree Analysis (FTA), Failure Mode and Effect Analysis (FMEA),
Software Sneak Circuit Analysis (SSCA), Petri Nets, and design and code walk-throughs. Each
of the analyses mentioned have specific advantages and disadvantages in regard to their
reasoning, approach, and results. The ultimate goal is to show ways that software failures or
errors can contribute to hazards and what software or system hardware monitors, work-arounds
or corrective procedures can be used to eliminate or control their effect.

 Many of these analyses are traditional hardware safety analyses that can be modified for
software safety. The tasks identified in MIL-STD-882C should address specific hazards that
have been identified and addressed as a component of the overall system. Tailoring of these
tasks is crucial in keeping the cost of the program down. The CECOM Safety Office has directed
these labor intensive analyses toward specific safety critical hazardous conditions that exist with
the command and control of firing and lasing systems.

 The results from the SRCA and the Software Safety Design Analysis should be addressed at
the software Critical Design Review. Specific software safety design recommendations that the
CECOM Safety Office has incorporated into software safety critical programs include watchdog
timers, two-fault rule for enabling entrance into critical routines, independent interrupt routines,
timing constraints, fail-safe recovery, and memory allocation.

 After the software system safety analysis is completed, any software safety design
recommendations that become part of the software requirement design documents should be
incorporated into the configuration control process for verification, validation and tracking
purposes.

4. Testing

 Software system safety testing verifies that the safety requirements (i.e., inhibits, traps,
interlocks) have been correctly implemented. Software safety testing also verifies that the
software functions safely within its intended environment. Many times software safety testing
reveals that software safety requirements are in direct conflict with military operational doctrine.
 An example of this is firing into no-fire zones or boundary areas. A commander, based on the
threat, can make a tactical decision to fire in the vicinity of friendlies, and violate safety design
features. If this is the case, it is very important that a thorough review of the intended operation
of the system be conducted with the user community (i.e., Training and Doctrine Command).
Usually a safety critical function will not be overridden by operational doctrine. However, if the
user decides that there is a work-around or operational doctrine that overrides the incorporation
of a software safety design requirement, then a System Safety Risk Assessment (SSRA) is
processed.

7

 Software system safety test requirements are derived from the PHA, Checklists, and any other
system safety hazard analyses. Many requirements are also gained from the software design
documentation and test plans. As part of the software system safety test analysis, safety
engineers should evaluate safety-related test descriptions, procedures, cases, and qualification
criteria for areas needing software safety-critical test input. The next step should be the
identification of specific safety tests that will be required for each software safety-critical module
and program. At this point in time, the safety engineer should keep a log of actual safety-related
tests that are carried out, with the details and results of the testing. For CECOM supported
systems, this will aid in the development of software safety suitability for release statements
which are needed to field the software. The software safety suitability for release statement is a
comprehensive evaluation of the safety of the system, prepared by the CECOM Safety Office.
All other directorates within the command, including the Software Engineering Directorate
(SED), are required to prepare their suitability for release statements.
 Software safety testing may include, but is not limited to, computer software unit level testing,
hardware-software operator interface testing, stress testing, go-no-go path testing, regression
testing, and failure mode testing. It should be noted that any patches made to the baseline
version of software safety critical systems should undergo complete regression testing for
fielding as a complete package.

 During the scoring of specific safety-critical tests, a safety engineer should be present to
evaluate their impact and determine/assign a priority level to the Software Trouble Report (STR)
or Test Incident Report (TIR). Priority levels rank from the highest (1) to the lowest (5) and
assess the software error. A priority 1 classification is defined as a software problem that
jeopardizes personnel safety, and a priority 2 classification specifies that the software problem
adversely affects the accomplishment of an operational or mission essential capability, and no
alternative work-around solution is known. For CECOM supported systems any safety critical
STR is given a priority 1 or 2 and must be corrected. CECOM does not classify any safety
critical errors with a priority of 3 or less. The Test Data Review Board (TDRB) is an excellent
mechanism for safety engineers to review, discuss, and evaluate safety-critical STR's. A
thorough review of the STR will reveal the actual software requirement specification that
initiated the test case and a trace can be done to locate the source code where the software error
occurred.

5. Hazard Tracking

 In order to comprehensively track software safety-related hazards, the CECOM Safety hazard
tracking process was modified to incorporate the total system safety approach as delineated in
MIL-STD-882C. MIL-STD-882C has integrated software safety requirements into the system

8

safety tasks, and has incorporated a process for software safety hazard assessment, including a
software safety hazard criticality matrix.

 All the existing system safety fields can be used for systems that include software safety
requirements. The CECOM Safety Office has designed the interface to be system oriented and
many menus are context sensitive. If safety-critical software is not part of your system, then
many specific software safety-related fields will not be invoked.

 Several of the processes and analyses discussed above include critical information that is
incorporated into the CECOM HATS. This information is integrated into system safety
data/hazards and follows the natural life-cycle of major system development, where applicable.
The tendency to separate hardware and software efforts would not lend itself to the total system
approach. Furthermore, the CECOM Safety Office has designed the HATS fields/data to act as a
lessons-learned repository, where specific safety reports can be generated.

 The additional software safety information/data that are imperative for an extensive hazard
tracking system, and are included in the CECOM HATS, include the following:

 System Safety Data Record:
 - Software version.
 - Software requirements included in the contract.
 - Software design language.
 - Type of standards that the software is designed to.
 - What design guidelines are being used.
 - Was a software safety checklist required.
 - What type of software safety analysis was performed.
 - Software PDR and CDR schedules.
 - Software system test types.
 - Software safety suitability for release statement.

 System Safety Hazard Record:
 - Added the "software version" as part of the system components.
 - Added "hold" and "monitor" to the hazard status.
 - Added "software safety analysis" and "software testing" to the "event that first
 identified the hazard."
 - Added "priority level assigned," if software testing identified the hazard.
 - Added "software" to hazard type.
 - Added "system or operation affected."
 - Added the "software hazard assessment categories."
 - Added "areas needing improvement."

9

 It should be noted that several categories are included for the development of a system safety
lessons-learned repository, from which specific hazard reports can be generated. Lessons
learned are extremely important not only for developing system safety requirements, but are
crucial to the certification of software safety on any program. The CECOM Safety Office
realizes that lessons learned must augment training.

6. Conclusion

 The incorporation of Software System Safety requirements into the system safety hazard
tracking system teaches system safety engineers the processes, specifications, necessary
information, and hazards involved with a Software System Safety program. This also allows
safety engineers to obtain baseline data for new systems and establish a standardization of
requirements between contractors and Government. The ability to have a centralized source of
software safety information that includes hazard controls, risk assessments, and report generation
is a valuable tool. The CECOM HATS assists engineers in developing requirements and
establishing an integrated software safety program. In the future, the CECOM Safety Office
plans on researching the software hazard risk assessment process as it relates to software priority
classifications and problem reporting. In conclusion, this is a new discipline which is still
evolving and we must follow the logical progression of an integrated system safety effort.

7. References

1. 12th International System Safety Conference Proceedings, "Identification,
Integration, and Tracking of Software System Safety Requirements," 6 July 94.

2. CECOM Safety Technical Report, TR-92-2, "Software System Safety Guide," DTIC AD
No. A250321, May 92.

3. CECOM Regulation, CECOM Reg 385-21, "Software System Safety," 19 Feb 91.

4. DOD-STD-2167A, "Defense System Software Development," 29 Feb 88.

5. DOD-STD-2168, "Defense System Software Quality Program," 29 April 88.

6. MIL-STD-498 (Draft), "Software Development and Documentation," 30 March 94.

10

7. MIL-STD-882C, "System Safety Program Requirements," 19 Jan 93.

